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Up-regulation of autophagy and apoptosis of cochlear 
hair cells in mouse models for deafness

Fei-long Xu, Yanjie Cheng, Wenya Yan

A b s t r a c t

Introduction: Hearing loss is one of the most common sensory disorders. 
Recent findings have shown that the apoptotic program and autophagy are 
related to hearing loss. The aim of the study was to explore the effects of 
noise and cisplatin exposure on apoptosis and autophagy in the hair cells of 
the cochleae.
Material and methods: C57BL/6 mice were randomly divided into 3 groups 
(n = 10 for each): the control group, the noise model group and the cisplatin 
model group. Auditory brainstem response (ABR) measurements were used 
to detect the hearing thresholds. TUNEL assay was used to evaluate cell 
apoptosis. Western blot and immunofluorescence were performed to exam-
ine the apoptosis- and autophagy-related proteins.
Results: The mice exhibited substantial hearing loss after noise and cispla-
tin exposure. Additionally, more TUNEL positive cells were observed in the 
mice after noise and cisplatin exposure compared with the control group. 
Moreover, the protein expression levels of Beclin-1, LC3-II, Bax and cleaved 
caspase-3 were significantly increased, while the expression of Bcl-2 was 
notably decreased in the cochlea after noise (p = 0.0278, 0.0075, 0.0142, 
0.0158, 0.0131 respectively) and cisplatin (p = 0.0220, 0.0075, 0.0024, 0.0161, 
0.0452 respectively) exposure compared with the control group. Besides, the 
ratio of LC3-II/LC3-I was substantially higher in the mice treated by cisplatin 
(p = 0.0046) and noise (p = 0.0220) compared with the control group.
Conclusions: Our findings demonstrated for the first time that noise and 
cisplatin exposure promoted apoptosis and autophagy in the hair cells of the 
cochleae. This study provides new insights into the mechanisms of noise- or 
cisplatin-induced hearing loss.
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Introduction

Hearing loss is one of the most common sensory disorders [1]. The 
World Health Organization states that 360 million people worldwide 
have disabling hearing loss [2]. Hearing loss severely impairs the quality 
of life of patients, because of psychological alienation, social withdrawal, 
and increased depression and anxiety [3]. Hearing loss can be caused 
by multiple genetic and environmental factors [4]. Understanding the 
pathogenesis and deafness mechanisms underlying hearing loss is very 
critical to designing rational preventive strategies.

Hair cells of the inner ear cochlea are specialized sensory cells which 
convert vibratory stimuli into neural signals [5]. The loss of hair cells in the 
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organ of the cochlea or Corti leads to a significant 
proportion of hearing impairment [6]. Moreover, 
hearing loss arises from various etiologies, such 
as over-stimulation of hair cells, ototoxic drugs, 
trauma to the head or gene mutations [7–9].

Noise-induced hearing loss is considered as 
a main cause of sensorineural hearing loss [10]. 
It has been reported that approximately 16% of 
hearing impairments are attributed to continuous 
exposure to loud noises [11]. Long-term exposure 
to noise levels beyond 80 decibels (dB) causes an 
increased risk of hearing loss [12]. With sufficient 
intensity and duration of noise, the hair cells may 
be severely disrupted [13]. 

Cisplatin is a widely used antineoplastic agent 
[14]. Ototoxicity is a major side effect of cisplatin, 
and often causes inner ear damage [15]. Hearing 
loss induced by cisplatin has been believed to oc-
cur in up to 80% of patients treated with cisplatin 
[16]. After injection, cisplatin accumulates in the 
inner ear fluids and then is taken up by the epi-
thelial cells [15]. A previous study demonstrated 
that cisplatin leads to the death of hair cells [17].

In the present study, we investigated the ef-
fects of noise and cisplatin exposure on apoptosis 
and autophagy in the hair cells of the cochleae.

Material and methods

Animals 

Male C57BL/6 mice were purchased from the 
Experimental Animal Center of Zhengzhou Univer-
sity. All mice were housed in a temperature con-
trolled environment under specific pathogen-free 
conditions. The study protocol was approved by 
the Ethics Committee of The First Affiliated Hos-
pital of Zhengzhou University. All animal experi-
mental procedures were approved according to 
the guidelines of the Care and Use of Laboratory 
Animals by the National Institute of Health, China.

Noise and cisplatin mouse models  
of deafness

Mice (8–12 weeks, 22–30 g)) were divided into 
three groups: the control group (n = 10), the noise 
model group (n = 10) and the cisplatin model 
group (n = 10). 

For noise exposure, mice were placed in a wire-
mesh exposure cage with four shaped compart-
ments and were able to move about within the 
compartment. The cage was placed in a  MAC-1 
sound-proof chamber designed by Industrial Acous-
tics (IAC, Bronx, NY) and the sound chamber was 
lined with sound-proofing acoustical foam to mini-
mize reflections. Mice were exposed to white noise 
at 100 dB SPL (sound pressure level) with a central 
frequency (2–4 kHz) [18]. The noise exposure was 
sustained for 6 h/day for 3 consecutive days. For 

cisplatin treatment, mice were treated with furo-
semide (200 mg/kg, i.p.; 1 ml/day; Sigma-Aldrich, 
St. Louis, MO, USA)) followed 1 h later by 1 mg/kg 
cisplatin (i.p.; Sigma) for 3 consecutive days. 

Auditory brainstem response (ABR) 
measurements

Auditory function was examined using ABR 
as described previously [19]. In brief, mice were 
anesthetized by intraperitoneal injection of ket-
amine (40 mg/kg) and xylazine (10 mg/kg). Then, 
the mice were placed in a  sound-isolated and 
electrically shielded booth (Acoustic Systems). 
Body temperature was maintained near 37°C with 
a heating pad. The ABR thresholds from both ears 
of the mice were detected using tone pips at 4, 8, 
16, 32 and 64 kHz. Thresholds were determined 
for each frequency by reducing the intensity in 
10 dB increments. Thresholds were estimated be-
tween the lowest stimulus level where a response 
was observed and the highest level without a re-
sponse. The data were recorded using Intelligent 
Hearing Systems (IHS; Miami, Florida).

TUNEL assay

Apoptotic hair cells were measured by TUNEL 
assay. Briefly, the animals were decapitated and 
the cochleae were perfused with 4% paraformal-
dehyde overnight, followed by decalcification with 
10% EDTA in PBS for 2 weeks, and then embedded 
in paraffin wax. The sections (5 μm) were incubat-
ed with an in situ cell death detection kit (Roche, 
Germany). Then, they were counterstained with 
DAPI (Beyotime Institute of Biotechnology, Chi-
na) for 10 min at room temperature. The sam-
ples were observed under a confocal microscope 
(FV1200, Olympus, Tokyo; Japan). 

Immunofluorescence

The cochlear sections (5 μm) were washed with 
PBS (0.1 M) 3 times, and then blocked with 10% 
goat serum for 30 min at room temperature. The 
tissue was incubated with primary antibodies 
against LC3-II (1 : 100; Santa Cruz Biotechnology) 
and myosin VI (1 : 400; Proteus Biosciences). After 
being washed with PBS for 3 times, the sections 
were incubated with Cy3- or Alexa Fluor 488-con-
jugated secondary antibody (1 : 1000; Life Tech-
nologies) at room temperature in the dark for 1 h. 
DAPI (2 mg/ml; Beyotime) was used to stain the 
nuclei. Sections were visualized using a confocal 
microscope (FV1200, Olympus, Tokyo; Japan). 

Western blot analysis

Whole cochlear protein was extracted as pre-
viously reported [20]. Protein concentrations were 
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measured by a BCA Protein Assay Kit (Beyotime 
Biotechnology, Haimen, China). Proteins (30 μg) 
were separated by electrophoresis on 10–15% 
SDS-PAGE gels and then transferred to polyvi-
nylidene difluoride (PVDF) membranes (Bio-Rad). 
After being blocked in TBST containing 5% milk 
for 1 h, the membranes were incubated with pri-
mary antibodies against LC3 (1 : 500; Cell Signal-
ing Technology), Beclin-1 (1 : 1000; Cell Signaling 
Technology), Bcl-2 (1 : 500, Santa Cruz Biotech-
nology), Bax (1 : 500, Santa Cruz Biotechnology), 
cleaved caspase-3 (1 : 500, Cell Signaling Technol-
ogy), and GAPDH (1 : 1000; Cell Signaling Tech-
nology) overnight at 4°C. Subsequently, the mem-
branes were incubated with secondary antibody 
conjugated to horseradish peroxidase (1 : 2000; 
Cell Signaling Technology) for 1 h at room tem-
perature. The bands were visualized by enhanced 
chemiluminescence (Beyotime) and quantified 
with ImageJ software (v. 1.47t.; National Institutes 
of Health, USA). GAPDH was used as an internal 
control. 

Statistical analysis

All results were expressed as means ± SD. Graph-
Pad Prism v 6.0 (GraphPad Software Incorporated, 
USA) was used for statistical analysis. Two-tailed 
unpaired Student’s t-tests were used for compari-
sons of data between groups. P < 0.05 was consid-
ered to be a statistically significant difference.

Results

Hearing thresholds shift after noise and 
cisplatin exposure

Firstly, we examined noise- and cisplatin-in-
duced hearing loss by ABR measurements. In 
Figure 1, the hearing thresholds of the mice were 
measured at various sound frequencies. The con-
trol mice showed normal ABR thresholds (10–50 
dB SPL). However, the mice of the noise and cis-
platin model showed deafness (70–90 dB SPL).

Noise exposures induce apoptosis and 
autophagy in the hair cells of the cochleae

To determine whether noise exposures induced 
apoptosis of the hair cells, we performed TUNEL 
staining to examine the cochleae from the mice. 
Few TUNEL-positive cells were detected in the 
control cochleae, while apoptosis was clearly seen 
in the cochleae from the noise model mice (Fig-
ure 2 A). Moreover, noise exposures significant-
ly increased apoptotic markers, such as cleaved 
caspase-3 and Bax, but reduced the levels of the 
anti-apoptotic protein Bcl-2 (Figures 2 B, C).

Next, to investigate the relationship between 
the noise exposures and autophagy, the autopha-

gy biomarkers Beclin-1 and LC3 proteins (LC3-I and 
LC3-II) were assessed by western blot. LC3B-II and 
Beclin-1 proteins were strongly increased after 
noise exposure compared with the control group 
(Figures 2 B, C). Meanwhile, the ratio of LC3-II/
LC3-I was also increased significantly in the noise 
model group compared to the control group (Fig-
ure 2 D). Myosin VI is one of the hair cell-specific 
proteins [21]. There was a higher amount of LC3-II  
in the myosin VI hair cells after noise exposure 
than that in the control group (Figure 2 E).

Cisplatin induces apoptosis and autophagy 
in the hair cells of the cochleae

Next, we extended our findings and deter-
mined the cell apoptosis after cisplatin damage. 
The number of TUNEL-positive cells was increased 
by cisplatin treatment compared with the control 
group (Figure 3 A). In addition, cleaved caspase-3 
and Bax levels were considerably higher, while  
Bcl-2 level was significantly lower in the cochleae 
of mice treated with cisplatin (Figures 3 B, C).

Finally, we analyzed the changes of autopha-
gy factors in response to cisplatin. Higher protein 
levels of Beclin-1 and LC3-II were observed in the 
cisplatin model group than those in the control 
group (Figures 3 B, C). Also, the ratio of LC3-II/
LC3-I was substantially higher in the mice treat-
ed with cisplatin compared with the control group 
(Figure 3 D). Furthermore, immunofluorescence 
staining further confirmed that LC3-II levels were 
increased in the hair cells after cisplatin damage 
compared with the control group (Figure 3 E).

Discussion

Mouse models are often used for understand-
ing the environmental and genetic factors to the 
development of hearing loss as well as the mech-
anisms underlying deafness [22]. Auditory brain-
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stem response measurement is a  common tech-
nique to test hearing abilities in a  non-invasive 
way [23]. Hearing loss induced by noise exposure 
is thought to be on average greater than 40 dB in 
the lower frequencies and greater than 75 dB in 
the high frequencies [24]. In our study, we found 
that the control mice showed normal ABR thresh-

olds (10–50 dB SPL). However, the mice of the 
noise and cisplatin model showed deafness (70–
90 dB SPL). Therefore, the noise and cisplatin mice 
models for deafness were established successfully.

Recent findings have shown that the apoptot-
ic program is an important contributing factor to 
hearing loss [25]. In cells, cisplatin induces replica-
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Figure 2. Noise induces apoptosis and autophagy in the hair cells of the cochleae. A – Apoptotic cell death in 
the cochlea of mice. TUNEL staining was performed on the sections of the cochlea from control and noise model 
mice. B – Representative western blots of LC3, Beclin-1, Bax, Bcl-2, and cleaved caspase-3 protein expression in 
the whole cochlear extracts of mice. C – Quantification of the LC3-II, Beclin-1, Bax, Bcl-2, and cleaved caspase-3 
proteins. D – Relative ratio of LC3-II/LC3-I. E – The cochlear sections were immunostained for myosin VI (green), 
LC3-II (red) and nuclei (blue)

*P < 0.05 and **p < 0.01 compared with the control group.
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tion-related DNA damage and thus apoptosis [26]. 
While cisplatin binding to DNA is the major cyto-
toxic mechanism in proliferating cells, ototoxicity 
appears to result from toxic levels of reactive oxy-
gen species and protein dysregulation within var-
ious cellular compartments [27, 28]. Cisplatin has 
been shown to lead to apoptosis of cochlear cells 

in vitro and in vivo [29, 30]. Mukherjea et al. report-
ed that increased TUNEL staining was observed in 
the cochleae from rats after cisplatin treatment 
for 3 days [31], which was in agreement with our 
study. The results were further strengthened by 
the observation of some biochemical apoptotic 
markers, such as caspase-3, Bcl-2 and Bax. Cis-
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Figure 3. Cisplatin induces apoptosis and autophagy in the hair cells of the cochleae. A – Apoptotic cell death in 
the cochlea of mice. TUNEL staining was performed on the sections of the cochlea from control and cisplatin model 
mice. B – Representative western blots of LC3, Beclin-1, Bax, Bcl-2, and cleaved caspase-3 protein expression in 
the whole cochlear extracts of mice. C – Quantification of the LC3-II, Beclin-1, Bax, Bcl-2, and cleaved caspase-3 
proteins. D – Relative ratio of LC3-II/LC3-I. E – The cochlear sections were immunostained for myosin VI (green), 
LC3-II (red) and nuclei (blue)
*P < 0.05 and **p < 0.01 compared with the control group.
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platin significantly increased the active caspase-3 
and Bax protein expression, but decreased Bcl-2 
protein expression in the rat cochleae [32], which 
was in line with our study. 

Noise exposure results in hair cell death primar-
ily through apoptosis [33]. Several noise-induced 
events, including calcium influx, ATP depletion, and 
oxidative stress, play a  role in exacerbating the 
pathological responses of sensory cells [34]. More-
over, noise exposure causes the activation of vari-
ous biochemical pathways, including the JNK path-
way [35], whose activation leads to apoptosis [36]. 
A previous study showed that the noise exposure 
triggered activation of caspase-3 in the hair cells 
of mice [37]. Our data showed more TUNEL-posi-
tive cells and increased cleaved caspase-3 and Bax 
protein expression, but decreased Bcl-2 protein ex-
pression, in noise-exposed cochleae. Therefore, ex-
posure to noise and cisplatin promoted apoptosis 
of the hair cells in the cochleae.

Recently, several studies have shown that au-
tophagy is related to auditory damage [38, 39]. 
During otic development, autophagy appears to 
be an active process in the avian inner ear [40]. 
Moreover, rapamycin, an inducer of autophagy, 
up-regulates the expression of LC3-II and Beclin-1 
and reduces cisplatin-induced ototoxicity [41]. In 
contrast, treatment with 3-methyladenine, an au-
tophagy inhibitor, inhibits LC3-II expression and 
augments temporary-to-permanent threshold 
shift [42]. Thus, hearing loss might be an auto-
phagy-related disease. Our study reported that 
increased protein levels of Beclin-1 and LC3-II, and 
a  higher ratio of LC3-II/LC3-I, were observed in 
the noise model and cisplatin model groups than 
those in the control group. Therefore, noise and 
cisplatin treatments elevated autophagy in the 
hair cells of cochleae. However, there was no fur-
ther research about the signaling pathways acti-
vated in noise- or cisplatin-induced cochleae. Sev-
eral pathways, such as ERK phosphorylation, are 
induced by mechanical damage and noise expo-
sure [43]. Accordingly, blocking apoptotic signal-
ing might diminish the extent of cochlear damage 
and hearing loss caused by noise or cisplatin [44]. 

In conclusion, to our knowledge, this is the first 
publication demonstrating the effects of noise 
and cisplatin exposure on apoptosis and auto-
phagy in the hair cells of the cochleae. Noise or 
cisplatin induces apoptosis and autophagy of the 
hair cells in the cochleae. This study provides new 
insights into the mechanisms of noise- or cispla-
tin-induced hearing loss.
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